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In  Part 1 of this work (Barenblatt 1993) a non-universal scaling law (depending on 
the Reynolds number) for the mean velocity distribution in fully developed 
turbulent shear flow was proposed, together with the corresponding skin friction law. 
The universal logarithmic law was also discussed and it was shown that it can be 
understood, in fact, as an asymptotic branch of the envelope of the curves 
corresponding to the scaling law. 

Here in Part 2 the comparisons with experimental data are presented in detail. The 
whole set of classic Nikuradze (1932) data, concerning both velocity distribution and 
skin friction, was chosen for comparison. The instructive coincidence of predictions 
with experimental data suggests the conclusion that the influence of molecular 
viscosity within the main body of fully developed turbulent shear flows remains 
essential, even at very large Reynolds numbers. Meanwhile, some incompleteness of 
the experimental data presented in the work of Nikuradze (1932) is noticed, namely 
the lack of data in the range of parameters where the difference between scaling law 
and universal logarithmic law predictions should be the largest. 

1. Introduction 
We shall speak, for definiteness, about flows in tubes because the data we use here 

for comparison with predictions are relevant to these flows. Both the universal 
logarithmic law and the scaling (power-type) law for the mean velocity distributions 
u ( y )  in cylindrical tubes have equally rigorous foundations, based, however, on 
essentially different assumptions, as explained in Part 1 (Barenblatt 1993). The 
assumption leading to the logarithmic law is that the velocity gradient within the 
main body of the flow is completely independent of the molecular viscosity. The 
assumption leading to the scaling (power-type) law is that such dependence is 
retained at  arbitrarily large Reynolds number, although it assumes an asymptotic 
form, i.e. scaling law, with invariance under a certain renormalization group, called 
incomplete similarity (Barenblatt 1979). Therefore these two laws proposed for the 
same quantity (the mean velocity distribution in the intermediate range of distance 
from the wall), are qualitatively different. 

In  Part 1 a scaling law was proposed for the mean velocity gradient, a, u : 

a,u = (u*/y)  @(%Re), @ = aQJa, (1) 

where u* is the dynamic or friction velocity, y the distance from the wall, 7 = u* ylv, 
Re = a d / v  the flow Reynolds number, v the kinematic viscosity of the fluid, a the 
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mean velocity across a section, d the tube diameter, and C, 01 are constants depending 
on Re in a certain specific way. 

We will present here in detail the checking of the basic conjecture, proposed in 
Part 1, that 

(2) 

Verification confirms this conjecture to a high degree of accuracy. Furthermore, this 
checking allows us to calculate an accurate approximation to the coefficient C as a 
function of Reynolds number. Both the relation (2) and this approximation allowed 
us to obtain a proposed form and quasi-universal representation of the basic scaling 
law. 

In the plane (q5 = u/u,, lny), the scaling law is represented by a family of curves, 
each of them corresponding to its Reynolds number as a parameter. The family 
possesses an envelope. It was necessary to check whether the experimental points 
settle down close to the envelope or deviate from it. Furthermore, the corresponding 
skin friction law was also derived, so that it could also be compared with the 
experimental data, giving an independent verification of the scaling law. 

Only Nikuradze's (1932) data concerning turbulent flows in cylindrical tubes were 
chosen here for the comparison with the predictions. This represents a large variety 
of data most carefully obtained under the guidance and observation of L. Prandtl. 
Up to the present time, this set of data is unrivalled in its completeness of 
presentation, and embraces an unsurpassed range of Reynolds number. Although, as 
will be seen later, this set of data has an essential shortcoming (the data cover an 
incomplete range of parameters) it forms a necessary first step from which to begin 
checking any newly proposed law for the velocity distribution and skin friction. 
Further checking will depend on future experiments to cover the missing parameter 
ranges. 

01 = 312 In Re. 

2. Processing of velocity distribution data 

As in Part 1, equation (1) can be rewritten as 

whence, by integration, 

2.1. Verijication of basic conjecture 

a7 q5 = ( i / y )  @(y, Re) = aCya-l, 

q5 = Cy"+D. 

(3) 

(4) 
We emphasize that a priori the integration constant D cannot be taken equal to zero. 
Indeed, the boundary condition q5 = 0 at y = 0 cannot be used: the point y = 0 lies 
outside the intermediate interval of distances where the asymptotic law (3) is 
assumed to be valid. Therefore in our primary processing, the coefficient D was taken 
into account and only later was it neglected, because it was shown that its 
contribution lies within the experimental scatter. 

Therefore, the relation 
$5 = Cy"(1 +D/cva) (5) 

was proposed for checking with 01 = 3/(2lnRe). The parameter 01 is a small number 
of the order of one tenth in the experiments. A rather severe procedure for checking 
this relation was chosen: all the values of q5 from all sixteen series of table 3 from 
Nikuradze (1932) were raised to the large (and, we emphasize, preassigned, and not 
adjusted each time) degree (21nRe)/3, and were plotted on graphs against y. The 
results are presented in figure l(a-e). It is seen clearly that in the intermediate 
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FIGURE I .  (a-e). The graphs of qYz1nR8)'a(q) reveal straight lines in an intermediate interval of 

values of q,  for various Re values as shown. 

interval of 7, straight lines have indeed appeared, more and more clearly as Re 
increases, over a larger and larger 7-interval including the origin. This strongly 
indicates that, according to our basic conjecture, the power (21nRe)/3 is correctly 
chosen, because even a relatively small error would transform the straight line 
segments into curves with positive or negative curvature. It is also seen that the 
contribution of the term D/Cy" in the intermediate interval of our interest is 
negligibly small - we recall that the intermediate asymptotic law (1)  is invalid within 
the viscous layer close to the wall where 7 is rather small, and within a certain region 
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FIGURE 2. The function C(1nRe) obtained by the processing of experimental data. 

near the tube axis. As can be seen, the straight lines shown in figure 1(a) 
(Re  = 4 x lo3; 6.1 x lo3; 9.2 x lo3), corresponding to minimal Reynolds numbers in 
the series, are less accurate than in figure 1 (b-e) .  The reason for that seems to be 
natural : a t  such Reynolds numbers the turbulent flow is not yet fully developed and 
so, according to Prandtl’s idea (see Niknradze 1932) special additional turbulizers 
were installed. The inaccuracy lies within experimental scatter but we also notice 
that the artificial character of the imposed additional turbulence could have had 
some influence here too. 

2.2. Determining the pre-power constant 

The values of the slopes of each straight line in figure 1 (a-e) were determined by a 
standard least-squares method, and each of the values so obtained was raised to the 
power 01 = 3/(21nRe). Thus the value of C for each Re was determined, and C was 
obtained as a function of In Re, presented in figure 2. 

This function is obviously close to  a linear one, and so it was approximated by a 
straight line regression, 

C = AlnRe+B. (6) 

The coefficients of the regression (6) were also estimated by the method of least 
squares over all sixteen series of experiments. Leaving aside experimental errors, 
these coefficients are influenced by some arbitrariness in discarding the experimental 
points near the wall and near the tube axis. This influence is illustrated by table 1,  
where the values of the coefficients estimated by discarding various numbers of 
points near the wall and near the axis are presented. 

For convenience, we used the following representation of the coefficient C : 

1 5 
C = -In Re+- .  (7)  d3 2 

The reason for that  was twofold: firstly, l / d 3  % 0.577 coincides deeply within the 
experimental scatter with the empirical value 0.578 (see table l), and secondly i t  was 
found that the hypothesis that A = 1 / 4 3  exactly greatly simplifies the subsequent 
manipulation of formulae. 
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Number of 
experiment 

1 
2 
3 
4 
5 
6 

The range 
ki-k, A B 

2-15 0.577 2.49 
3-4  4 0.578 2.50 
4-13 0.579 2.51 
4-15 0.577 2.48 
4-14 0.578 2.49 
5-1 1 0.578 2.53 

Mean value 0.578+0.0017 2.50f0.016 

TABLE 1. The coefficients A ,  B in relation (6). Note : k,  is the number of the first non-discarded point 
near the wall; k ,  is the number of the last non-discarded point near the axis. The total number of 
points in each wries is 16. 

2.3. The quasi-universal form of the scaling law 

According to (2) and (7), the scaling law can be represented in the final form 

or (9) 

A quasi-universal form of this law can he obtained by defining a new function $, 

1 2a4 
a 2/3+5a 

+=-In  = lny. 

This form is convenient because, instead of a family of curves, a single curve in 
reduced variables is obtained. Indeed, according to (lo),  the experimental points in 
the ($, In 7)-plane should settle down on the bisectrix of the first quadrant, and this 
is in fact so (see figure 3). Accuracy (except for a very few points, from a total of 256, 
corresponding mainly to small values of 7 where the asymptotic behaviour is not 
expected to hold) is in favour of the proposed scaling law. An additional convenience 
of the quasi-universal representation (10) lies in the possibility of comparing the 
accuracy with the graph of the universal logarithmic law, where ln? is also usually 
plotted on the abscissa axis. At small 7 a systematic deviation from the bisectrix is 
observed. This is natural because these points are outside the main body of the flow. 

2.4. The scaling laws in the (#,lny)-plane and their envelope: comparison with the 
universal logarithmic law 

Consider, in the (9, In q)-plane, the three experimental series with Reynolds numbers 
differing approximately by an order of magnitude: (i) Re = 1.67 x lo4, (ii) Re = 
2.05 x lo5, and (iii) Re = 3.24 x los. In figure 4 all the experimental points of these 
series are presented together with the scaling curves (9) corresponding to their 
Reynolds numbers (curves i, ii, iii), the universal logarithmic law straight line (curve 
iv), and the envelope of the family of scaling law curves (curve v). We see that there 
appears to be a discernible advantage in favour of the curves of the scaling laws: 
there is a systematic, albeit small, deviation from the universal (independent of 
Reynolds number) curves (iv) and (v). Note that the small but systematic deviations 
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from the universal logarithmic law, in favour of power-type laws with empirically 
fitted coefficients, were noted by Nikuradze himself. It is interesting to offer gome 
quantitative estimates : the relative mean-square error a, for the scaling law (9) and 
the corresponding mean-square error gu for the universal logarithmic law were 
calculated. The following figures were obtained: au = 2.1 x 

In table 2, the relative mean-square errors are given for the universal law, a,, and 
for the proposed scaling law (9), us. The values are calculated for all sixteen 
experimental series. We do not want to  emphasize here the difference in favour of the 
proposed scaling law : this difference, in our opinion, is not significant. 

We do, however, wish to stress another circumstance, namely that Nikuradze 
(1932) also worked with a large tube, with d = 10 cm. He obtained the drag results 
plotted in figure 5 .  The velocity data for this tube unfortunately were not available. 

as = 1.1 x 
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2 4 6 8 10 12 

FIGURE 4. The experimental points, and the scaling law curves: curve (i):  (+, Re = 1.67 x lo4); 
curve (ii) : (0,  Re = 2.05 x lo5) ; curve (iii) : ( x , Re = 3.24 x lo6) ; together with the curve of the 
universal logarithmic law (curve iv), and the envelope of scaling laws (curve v).  

In7 

Number of 
experiment uu u s  

1 0.042 0.019 
2 0.030 0.011 
3 0.021 0.010 
4 0.015 0.007 
5 0.016 0.012 
6 0.014 0.007 
7 0.023 0.010 
8 0.019 0.009 
9 0.017 0.004 

10 0.012 0.007 
11  0.031 0.020 
12 0.015 0.005 
13 0.013 0.003 
14 0.012 0.007 
16 0.013 0.014 
16 0.014 0.015 

TABLE 2. The relative mean square errors for the universal law (rU) 
and the proposed scaling law (us). 
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FIGURE 5. The experimental data for various tubes and various Reynolds number confirms the skin 
friction law (1 1)-( 12) which follows from scaling law (9) with rather good accuracy : 0, d = 1 cm; 
a, d = 2 cm; 0 ,  d = 3 cm; x ,  d = 5 em; +, d = 10cm. 

By using this tube, he could apparently obtain results for Reynolds numbers which 
were smaller than those which he presented in his table 9 for the drag coefficients 
(Re 2 7.25 x lo5). For these flows, the deviation from the scaling law on the one hand 
and the universal logarithmic law and envelope on the other should be larger, and 
better observable. Indeed, other data exist which demonstrate clearly a marked 
deviation of the experimental data upwards from the universal logarithmic law curve 
(see Monin & Yaglom 1971, p. 273). 

2.5. The skin-friction law 

As was shown in Part 1, the skin-friction law corresponding to the scaling law (9) for 
the velocity distribution assumes the form 

= 8/ ly2/(lfa), (11) 

where 
3 

2 In Re 
a=- e:(1/3+5a) 

2"a( 1 +a) ( 2  +a) ' 
Y =  

It is convenient to compare the prediction (1 1)-( 12) with experimental data 
(Nikuradze 1932, table 9) directly. The predictions and the data coincide to a very 
high accuracy. Therefore another form of comparison was chosen : 

was plotted as a function of lnRe, denoting the experimentally determined value. In 
table 9 of Nikuradze (1932), a total of 125 points are available, corresponding to 
various Reynolds numbers ranging widely from slightly supercritical (Re = 
3.07 x lo3) to very large (Re = 3.23 x los). All these results are presented in figure 5. 
Ideally, the quantity 6 should be equal to unity. We see in figure 5 that nearly all the 
deviations settle down to unity within the experimental scatter range. 
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3. Conclusions 
The processing of Nikuradze’s (1932) data as performed here allowed us to 

determine the necessary constants in the proposed scaling law, and confirmed i t  to 
high accuracy. 

This verification by no means terminates the experimental checking of the scaling 
law (9). Now, with all the constants determined from Nikuradze’s (1932) experiments, 
the scaling laws should be checked against other data, preferably further from the 
envelope of the scaling laws (developed turbulent flows in large tubes with smaller 
Reynolds number). 
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